Autonomic Networking Use Case for Distributed Detection of Service Level Agreement (SLA) Violations
RFC 8316

Document Type RFC - Informational (February 2018; No errata)
Last updated 2018-02-13
Stream IRTF
Formats plain text pdf html bibtex
IETF conflict review conflict-review-irtf-nmrg-autonomic-sla-violation-detection
Stream IRTF state Published RFC
Consensus Boilerplate Yes
RFC Editor Note (None)
IESG IESG state RFC 8316 (Informational)
Telechat date
Responsible AD (None)
Send notices to (None)
IANA IANA review state IANA OK - No Actions Needed
IANA action state No IC
Internet Research Task Force (IRTF)                             J. Nobre
Request for Comments: 8316           University of Vale do Rio dos Sinos
Category: Informational                                     L. Granville
ISSN: 2070-1721                  Federal University of Rio Grande do Sul
                                                                A. Clemm
                                                                  Huawei
                                                      A. Gonzalez Prieto
                                                                  VMware
                                                           February 2018

       Autonomic Networking Use Case for Distributed Detection of
                Service Level Agreement (SLA) Violations

Abstract

   This document describes an experimental use case that employs
   autonomic networking for the monitoring of Service Level Agreements
   (SLAs).  The use case is for detecting violations of SLAs in a
   distributed fashion.  It strives to optimize and dynamically adapt
   the autonomic deployment of active measurement probes in a way that
   maximizes the likelihood of detecting service-level violations with a
   given resource budget to perform active measurements.  This
   optimization and adaptation should be done without any outside
   guidance or intervention.

   This document is a product of the IRTF Network Management Research
   Group (NMRG).  It is published for informational purposes.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Research Task Force
   (IRTF).  The IRTF publishes the results of Internet-related research
   and development activities.  These results might not be suitable for
   deployment.  This RFC represents the consensus of the Network
   Management Research Group of the Internet Research Task Force (IRTF).
   Documents approved for publication by the IRSG are not candidates for
   any level of Internet Standard; see Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8316.

Nobre, et al.                 Informational                     [Page 1]
RFC 8316         AN Use Case Detection of SLA Violations   February 2018

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Definitions and Acronyms  . . . . . . . . . . . . . . . . . .   5
   3.  Current Approaches  . . . . . . . . . . . . . . . . . . . . .   6
   4.  Use Case Description  . . . . . . . . . . . . . . . . . . . .   7
   5.  A Distributed Autonomic Solution  . . . . . . . . . . . . . .   8
   6.  Intended User Experience  . . . . . . . . . . . . . . . . . .  10
   7.  Implementation Considerations . . . . . . . . . . . . . . . .  11
     7.1.  Device-Based Self-Knowledge and Decisions . . . . . . . .  11
     7.2.  Interaction with Other Devices  . . . . . . . . . . . . .  11
   8.  Comparison with Current Solutions . . . . . . . . . . . . . .  12
   9.  Related IETF Work . . . . . . . . . . . . . . . . . . . . . .  12
   10. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  13
   11. Security Considerations . . . . . . . . . . . . . . . . . . .  13
   12. Informative References  . . . . . . . . . . . . . . . . . . .  13
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  16
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  16

Nobre, et al.                 Informational                     [Page 2]
RFC 8316         AN Use Case Detection of SLA Violations   February 2018

1.  Introduction

   The Internet has been growing dramatically in terms of size,
   capacity, and accessibility in recent years.  Communication
   requirements of distributed services and applications running on top
   of the Internet have become increasingly demanding.  Some examples
   are real-time interactive video or financial trading.  Providing such
   services involves stringent requirements in terms of acceptable
   latency, loss, and jitter.

   Performance requirements lead to the articulation of Service Level
Show full document text